Screen Space Ambient Occlusion (SSAO) effect.

Hierarchy (View Summary, Expand)

Constructors

Properties

active: boolean = true

Whether the effect is active or not. Prefer using enabled instead.

aoRadius: VolumeParameter = ...

The most important parameter for your ambient occlusion effect. Controls the radius/size of the ambient occlusion in world units. Should be set to how far you want the occlusion to extend from a given object. Set it too low, and AO becomes an edge detector. Too high, and the AO becomes "soft" and might not highlight the details you want. The radius should be one or two magnitudes less than scene scale: if your scene is 10 units across, the radius should be between 0.1 and 1. If its 100, 1 to 10.

1
color: VolumeParameter = ...

The color of the ambient occlusion. By default, it is black, but it can be changed to any color to offer a crude approximation of global illumination. Recommended in scenes where bounced light has a uniform "color", for instance a scene that is predominantly lit by a blue sky. The color is expected to be in the sRGB color space, and is automatically converted to linear space for you. Keep the color pretty dark for sensible results.

new Color(0, 0, 0)
falloff: VolumeParameter = ...

The second most important parameter for your ambient occlusion effect. Controls how fast the ambient occlusion fades away with distance in proportion to its radius. Defaults to 1, and behind-the-scenes, is a calculated as a ratio of your radius (0.2 * distanceFalloff is the size used for attenuation). Decreasing it reduces "haloing" artifacts and improves the accuracy of your occlusion, but making it too small makes the ambient occlusion disappear entirely.

1
gameObject: GameObject

Reference to the GameObject this component is attached to This is a three.js Object3D with additional GameObject functionality

guid: string = "invalid"

Unique identifier for this component instance, used for finding and tracking components

intensity: VolumeParameter = ...

A purely artistic control for the intensity of the AO - runs the ao through the function pow(ao, intensity), which has the effect of darkening areas with more ambient occlusion. Useful to make the effect more pronounced. An intensity of 2 generally produces soft ambient occlusion that isn't too noticeable, whereas one of 5 produces heavily prominent ambient occlusion.

1
quality: ScreenSpaceAmbientOcclusionN8QualityMode = ScreenSpaceAmbientOcclusionN8QualityMode.Medium

The quality of the ambient occlusion effect.

ScreenSpaceAmbientOcclusionN8QualityMode.Medium
screenspaceRadius: boolean = false

If you want the AO to calculate the radius based on screen space, you can do so by setting configuration.screenSpaceRadius to true. This is useful for scenes where the camera is moving across different scales a lot, or for scenes where the camera is very close to the objects.

false
sourceId?: string

Identifier for the source asset that created this component. For example, URL to the glTF file this component was loaded from

Accessors

  • get activeAndEnabled(): boolean

    Checks if this component is currently active (enabled and part of an active GameObject hierarchy) Components that are inactive won't receive lifecycle method calls

    Returns boolean

    True if the component is enabled and all parent GameObjects are active

  • get context(): Context

    The context this component belongs to, providing access to the runtime environment including physics, timing utilities, camera, and scene

    Returns Context

  • set context(context: Context): void

    Parameters

    Returns void

  • get destroyed(): boolean

    Checks if this component has been destroyed

    Returns boolean

    True if the component or its GameObject has been destroyed

  • get enabled(): boolean

    Controls whether this component is enabled Disabled components don't receive lifecycle callbacks

    Returns boolean

  • set enabled(val: boolean): void

    Parameters

    • val: boolean

    Returns void

  • get forward(): Vector3

    Gets the forward direction vector (0,0,-1) of this component's GameObject in world space

    Returns Vector3

  • get isPostProcessingEffect(): boolean

    Returns boolean

  • get layer(): number

    The layer value of the GameObject this component is attached to Used for visibility and physics filtering

    Returns number

  • get name(): string

    The name of the GameObject this component is attached to Used for debugging and finding objects

    Returns string

  • set name(str: string): void

    Parameters

    • str: string

    Returns void

  • get pass(): N8AOPostPass

    Returns N8AOPostPass

  • get postprocessingContext(): null | PostProcessingEffectContext

    Returns null | PostProcessingEffectContext

  • get right(): Vector3

    Gets the right direction vector (1,0,0) of this component's GameObject in world space

    Returns Vector3

  • get scene(): Scene

    Shorthand accessor for the current scene from the context

    Returns Scene

    The scene this component belongs to

  • get static(): boolean

    Indicates whether the GameObject is marked as static Static objects typically don't move and can be optimized by the engine

    Returns boolean

  • set static(value: boolean): void

    Parameters

    • value: boolean

    Returns void

  • get tag(): string

    The tag of the GameObject this component is attached to Used for categorizing objects and efficient lookup

    Returns string

  • set tag(str: string): void

    Parameters

    • str: string

    Returns void

  • get typeName(): string

    Returns string

  • get up(): Vector3

    Gets the up direction vector (0,1,0) of this component's GameObject in world space

    Returns Vector3

  • get worldEuler(): Euler

    Gets the rotation of this component's GameObject in world space as Euler angles (in radians)

    Returns Euler

  • set worldEuler(val: Euler): void

    Sets the rotation of this component's GameObject in world space using Euler angles (in radians)

    Parameters

    • val: Euler

      The world rotation Euler angles to set

    Returns void

  • get worldPosition(): Vector3

    Gets the position of this component's GameObject in world space

    Returns Vector3

  • set worldPosition(val: Vector3): void

    Sets the position of this component's GameObject in world space

    Parameters

    • val: Vector3

      The world position vector to set

    Returns void

  • get worldQuaternion(): Quaternion

    Gets the rotation of this component's GameObject in world space as a quaternion

    Returns Quaternion

  • set worldQuaternion(val: Quaternion): void

    Sets the rotation of this component's GameObject in world space using a quaternion

    Parameters

    • val: Quaternion

      The world rotation quaternion to set

    Returns void

  • get worldRotation(): Vector3

    Gets the rotation of this component's GameObject in world space as Euler angles (in degrees)

    Returns Vector3

  • set worldRotation(val: Vector3): void

    Sets the rotation of this component's GameObject in world space using Euler angles (in degrees)

    Parameters

    • val: Vector3

      The world rotation vector to set (in degrees)

    Returns void

Methods

  • Registers an event listener for the specified event type

    Type Parameters

    Parameters

    • type: string

      The event type to listen for

    • listener: (evt: T) => any

      The callback function to execute when the event occurs

    Returns void

  • Apply post settings. Make sure to call super.apply() if you also create an effect

    Parameters

    • ctx: PostProcessingEffectContext

    Returns undefined | void | EffectProviderResult

  • Called once when the component becomes active for the first time. This is the first lifecycle callback to be invoked

    Returns void

  • Destroys this component and removes it from its GameObject After destruction, the component will no longer receive lifecycle callbacks

    Returns void

  • Dispatches an event to all registered listeners

    Parameters

    • evt: Event

      The event object to dispatch

    Returns boolean

    Always returns false (standard implementation of EventTarget)

  • Called at the beginning of each frame before regular updates. Use for logic that needs to run before standard update callbacks.

    Returns void

  • Called after all update functions have been called. Use for calculations that depend on other components being updated first.

    Returns void

  • Called after the scene has been rendered. Use for post-processing or UI updates that should happen after rendering

    Returns void

  • Called immediately before the scene is rendered.

    Parameters

    • frame: null | XRFrame

      Current XRFrame if in an XR session, null otherwise

    Returns void

  • Called before an XR session is requested Use to modify session initialization parameters

    Parameters

    • mode: XRSessionMode

      The XR session mode being requested

    • args: XRSessionInit

      The session initialization parameters that can be modified

    Returns void

  • implement to create a effect once to be cached in the base class. Make sure super.apply() is called if you also override apply

    Returns EffectProviderResult

  • Called when the component is destroyed. Use for cleanup operations like removing event listeners

    Returns void

  • Called every time the component becomes disabled or inactive in the hierarchy. Invoked when the component or any parent GameObject becomes invisible

    Returns void

  • Called when a modification is made through the external editor (called from @needle-tools/editor-sync)

    Parameters

    • modification: EditorModification

      The modification that was made in the external editor

    Returns undefined | boolean | void

    false if you want the editor package to apply the modification. Otherwise it's expected that your code handles applying the change

  • Called when the context's pause state changes.

    Parameters

    • isPaused: boolean

      Whether the context is currently paused

    • wasPaused: boolean

      The previous pause state

    Returns void

  • Removes a previously registered event listener

    Type Parameters

    Parameters

    • type: string

      The event type the listener was registered for

    • listener: (arg: T) => any

      The callback function to remove

    Returns void

  • Called when this component needs to remap guids after an instantiate operation.

    Parameters

    • guidsMap: GuidsMap

      Mapping from old guids to newly generated guids

    Returns void

  • Sets the position of this component's GameObject in world space using individual coordinates

    Parameters

    • x: number

      X-coordinate in world space

    • y: number

      Y-coordinate in world space

    • z: number

      Z-coordinate in world space

    Returns void

  • Sets the rotation of this component's GameObject in world space using quaternion components

    Parameters

    • x: number

      X component of the quaternion

    • y: number

      Y component of the quaternion

    • z: number

      Z component of the quaternion

    • w: number

      W component of the quaternion

    Returns void

  • Sets the rotation of this component's GameObject in world space using individual Euler angles

    Parameters

    • x: number

      X-axis rotation

    • y: number

      Y-axis rotation

    • z: number

      Z-axis rotation

    • degrees: boolean = true

      Whether the values are in degrees (true) or radians (false)

    Returns void

  • Called once at the beginning of the first frame after the component is enabled. Use for initialization that requires other components to be awake.

    Returns void

  • Starts a coroutine that can yield to wait for events. Coroutines allow for time-based sequencing of operations without blocking. Coroutines are based on generator functions, a JavaScript language feature.

    Parameters

    • routine: Generator

      Generator function to start

    • evt: FrameEvent = FrameEvent.Update

      Event to register the coroutine for (default: FrameEvent.Update)

    Returns Generator

    The generator function that can be used to stop the coroutine

    Time-based sequencing of operations

    *myCoroutine() {
    yield WaitForSeconds(1); // wait for 1 second
    yield WaitForFrames(10); // wait for 10 frames
    yield new Promise(resolve => setTimeout(resolve, 1000)); // wait for a promise to resolve
    }

    Coroutine that logs a message every 5 frames

    onEnable() {
    this.startCoroutine(this.myCoroutine());
    }
    private *myCoroutine() {
    while(this.activeAndEnabled) {
    console.log("Hello World", this.context.time.frame);
    // wait for 5 frames
    for(let i = 0; i < 5; i++) yield;
    }
    }
  • Stops a coroutine that was previously started with startCoroutine

    Parameters

    • routine: Generator

      The routine to be stopped

    • evt: FrameEvent = FrameEvent.Update

      The frame event the routine was registered with

    Returns void

  • Determines if this component supports a specific XR mode

    Parameters

    • mode: XRSessionMode

      The XR session mode to check support for

    Returns boolean

    True if the component supports the specified mode

  • Reset previously set values (e.g. when adjusting settings on the renderer like Tonemapping)

    Returns void

  • Called once per frame during the main update loop. The primary location for frame-based game logic.

    Returns void

MMNEPVFCICPMFPCPTTAAATR